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Abstract

In this paper we study the problem of cross spectral face
recognition in heterogeneous environments. Specifically we
investigate the advantages and limitations of matching short
wave infrared (SWIR) face images to visible images under
controlled or uncontrolled conditions. The contributions of
this work are three-fold. First, three different databases
are considered, which represent three different data col-
lection conditions, i.e., images acquired in fully controlled
(indoors), semi-controlled (indoors at standoff distances ≥
50m), and uncontrolled (outdoor operational conditions)
environments. Second, we demonstrate the possibility of
SWIR cross-spectral matching under controlled and chal-
lenging scenarios. Third, we illustrate how photometric
normalization and our proposed cross-photometric score
level fusion rule can be utilized to improve cross-spectral
matching performance across all scenarios. We utilized
both commercial and academic (texture-based) face match-
ers and performed a set of experiments indicating that SWIR
images can be matched to visible images with encouraging
results. Our experiments also indicate that the level of im-
provement in recognition performance is scenario depen-
dent.

1. Introduction

Most face recognition (FR) systems are based on im-
ages captured in the visible range of the electromagnetic
spectrum (380-750 nm). However, in harsh environmental
conditions characterized by unfavorable lighting and pro-
nounced shadows (such as a nighttime environment [2]),
human recognition based only on visible spectral images
may not be feasible [14, 8]. Thus, recognition of faces in
the infrared spectrum has become an area of growing inter-
est [16, 10, 15].

The infrared (IR) spectrum can be further divided into
multiple spectral bands. The boundaries between these
bands can vary depending on the scientific field involved

Figure 1. Illustration of visible and SWIR imagery present in
databases DB1 and DB3 respectively.

(e.g., optical radiation, astrophysics, or sensor technology
[5]). The spectral bands used in this work are the visible
(used for baseline and cross-spectral experiments) and the
Short-Wave Infrared (used for cross-spectral experiments
only); the SWIR band is a part of the reflected IR (ac-
tive) band that ranges, in our experiments, from 0.9-1.9µm.
SWIR has a longer wavelength range than NIR and is more
tolerant to low levels of obscurants like fog and smoke. Dif-
ferences in appearance between images sensed in the visible
and the active IR band are due to the properties of the object
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being imaged. Regions in the SWIR band require an exter-
nal light source. However, the advantage is that a SWIR
imaging system can take advantage of sunlight, moonlight,
or starlight, and can remain unobtrusive and covert since the
reflected IR light is invisible to the human eye.

In the visible spectrum, human faces from different eth-
nic groups can exhibit different reflectance characteristics.
The problem of finding invariants related to skin color in the
visible spectrum could be addressed in the IR spectrum by
using a calibrated IR sensor. In addition, since IR and vis-
ible imagery capture intrinsically different characteristics
of the observed faces, intuitively, a better face description
could be found by utilizing the complimentary information
present across the two spectra. The main benefits in using
SWIR spectrum for face recognition are the following: (a)
the external source of illumination is invisible to the human
eye making it suitable for covert applications; (b) it can be
useful in a nighttime environment; (c) SWIR imagery can
be combined with visible-light imagery to generate a more
complete image of the human face; and (d) facial features
that are not observed in the visible spectrum may be ob-
servable in the SWIR spectrum. In addition, its proximity
to the visible spectrum makes it particularly relevant for use
in biometric-related face applications.

While previous FR studies have mainly concentrated in
visible and NIR imagery, FR in SWIR spectrum, specifi-
cally at 1550 nm, has received limited attention in the lit-
erature. The main problem is that prior work focused in
SWIR FR, researchers concentrated on applying FR algo-
rithms on face images acquired under fully controlled con-
ditions [1]. However, in uncontrolled scenarios (long range
recognition, operational conditions), there is a need for ef-
ficient Intelligence and Surveillance Reconnaissance (ISR)
interoperability, i.e., operational teams (e.g., armed forces)
are required to effectively manage, access and use ISR to
improve command and control, and enhance information
sharing and situational understanding to improve the effec-
tiveness of operations while minimizing collateral damage
in a complex environment.

The aforementioned challenging scenarios motivated us,
and therefore in this paper we study the problem of cross
spectral face recognition in heterogeneous environments.
Specifically, we investigate the advantages and limitations
of matching short wave infrared (at 1550 nm) probe face
images to visible (gallery) images acquired under variable
scenarios: visible images were collected under controlled
and semi-controlled conditions (full frontal faces, facial ex-
pressions, indoors and outdoors, short range, fixed standoff
distance to 7 feet or 2 meters), while SWIR images were
captured under (i) fully controlled indoor conditions; (ii)
semi-controlled conditions (full frontal faces, indoors, long
ranges, i.e., up to 348 feet or 106 meters); and (iii) uncon-
trolled conditions (variable poses, face expressions, occlu-

sion, outdoors, night and day, variable range, i.e., up to 1312
feet or 400 meters). Three different matching/encoding
algorithms were utilized, namely, Local Binary Patterns
(LBP) [11], Local Ternary Patterns (LTP) [11], and a com-
mercial face matcher (Identity Tools G8) provided by L1
Systems1.

Our experimental results indicate that our proposed
methodology (i.e., using a cross-photometric score level fu-
sion scheme) performs better than baseline (single matchers
before photometric normalization) cross-spectral FR perfor-
mance, in the most challenging (uncontrolled) scenario de-
scribed above, by 25% using G8 in combination with the
proposed fusion rule. Similar performance improvement
was noted in the dataset acquired under semi-controlled
conditions, i.e., our fusion rule performed better than the
baseline by 10% at 50 m, and by 15% at 106 m.

1.1. Contributions

The contributions of this work are three-fold. First,
three different databases are considered, which encompass
three different data collection scenarios (controlled, semi-
controlled and uncontrolled). Second, a set of experiments
is performed in order to demonstrate the feasibility of cross-
spectral matching under controlled and challenging scenar-
ios. Third, we illustrate how (a) the usage of indepen-
dent or combined photometric normalization techniques,
and (b) cross-photometric score level fusion can be utilized
to improve cross-spectral matching performance across all
scenarios. In this method we first applied independent
or combined photometric normalization techniques to both
the gallery and probe images. Then, the best scores, in
terms of recognition performance, were fused at the score
level. Cross-spectral matching is useful in practical sce-
narios: in law enforcement, for example, the mug shots
are mainly acquired in the visible spectrum (as described
in the ANSI/NIST-ITL 1-2000 standard) while a probe im-
age may be acquired in the greater IR spectrum. The pur-
pose of using cross-photometric score level fusion was be-
cause we are dealing with a heterogeneous problem (where
gallery and probe sets have face images acquired in differ-
ent spectral bands) while at the same time the probe im-
ages were acquired under variable scenarios. Thus, we ar-
gue that cross-photometric score level fusion can bridge the
spatial representation of independent gallery (visible) and
probe (SWIR) images so that we can achieve higher match-
ing performance.

1.2. Paper Organization

The rest of this paper is organized as follows. Section 2
describes the visible and SWIR imagery used in this work.
Section 3 provides a summary of the pre-processing tech-
niques used, face recognition algorithms employed, the pro-
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Database Scenario Standoff Distance Cameras Sessions Subjects Imgs/Subject
Variable/Fixed Meters Visible SWIR Visible SWIR

DB1 CI F 2 5D Mark II XenIC 2 50 2-14 27
DB2 SCI F 50 & 106 Powershot Goodrich 1-2 50 6 4-6
DB3 UO V 60 - 400 Powershot2 Goodrich 2-5 16 1 - 6 1-8

Table 1. Database and scenario statistics - DB1 was collected in a controlled indoor (CI) environment at a fixed stand-off distance, with
minor variability in regards to the acquired imagery. DB2 was collected in a semi-controlled indoor (SCI) environment with moderate
variability in terms of distance. DB3 was collected in an uncontrolled outdoor (UO) environment during the day and night (SWIR only).
SWIR image acquisition was opportunistic; no restrictions were placed on the subjects, resulting in significant variability with respect to
pose, expression, illumination, stand-off distance, and occlusion (sunglasses and headwear).

posed cross-photometric score level fusion rule, and exper-
iments conducted. Section 4 presents the results while con-
clusions are drawn in Section 5.

2. Experimental Setup
Three unique facial image databases (DB1, DB2, and

DB3) were considered to facilitate the proposed study in
heterogeneous environments. Each database consists of a
set of visible gallery images and SWIR probe images, which
were acquired in different environmental conditions and un-
der different scenarios. The following subsections describe
each database in more detail as well as the equipment used
for acquiring imagery in the different spectra.

2.1. Equipment

1. Canon EOS 5D Mark II: This digital SLR camera
has a 21.1-megapixel full-frame CMOS sensor with
DIGIC 4 Image Processor and a vast ISO range of 100-
6400. It also has Auto Lighting Optimizer and Periph-
eral Illumination Correction that enhances its capabil-
ity. In this work, the Mark II is used to obtain standard
RGB, ultra-high resolution frontal pose face images in
the visible spectrum.

2. Canon PowerShot SX110: The SX110 digital SLR
has a 9-megapixel CCD sensor with an ISO range from
80-1600.

3. XenICS Xeva-818: This camera has an Indium Gal-
lium Arsenide (InGaAs) 320× 256 Focal Plane Array
(FPA) with 30m pixel pitch, 98% pixel operability and
three stage thermoelectric cooling. The XEVA-818
has a relatively uniform spectral response from 950 -
1700 nm wavelength (SWIR band) across which the
InGaAs FPA has largely uniform quantum efficiency.
Response falls rapidly at wavelengths lower than 950
nm and greater than 1700 nm.

4. Goodrich SU640: The SU640 is an Indium Gal-
lium Arsenide (InGaAs) video camera featuring high-
sensitivity and wide dynamic range. This model has
a 640 × 512 FPA with 25m pixel pitch, and > 99%

pixel operability. The spectral sensitivity of the SU640
ranges uniformly from 700 - 1700 nm wavelength.
Similar to the XenICS, response falls rapidly at wave-
lengths lower than 700 nm (as opposed to 950 nm for
XenICS) and greater than 1700 nm.

2.2. Databases

The following is a short description of each database uti-
lized in our experiments. Additional information may be
found in table 1.

1. DB1 - Collected in a controlled indoor (CI) environ-
ment, comprised of 50 subjects over two sessions.
High quality visible imagery was captured with a
Canon 5D Mark II with an average inter-ocular dis-
tance of 563.08 pixels (min=347, max=947) and stan-
dard deviation of 144.36 pixels. SWIR images were
collected using a Xeva-818 using broadband tungsten
illumination with an average inter-ocular distance of
63.16 pixels (min=47, max=93) and a standard devi-
ation of 10.12 pixels. Images were collected at three
different poses, i.e., full frontal and left/right at +/-67.5
degrees. For each pose, images were obtained with and
without employing a band pass filter. The wavelength
of the bandpass filters starts from 950 nm and goes up
to 1650 nm in steps of 100 nm. In this paper we only
utilized the SWIR imagery captured at 1550 nm.

2. DB2 - Collected in a semi-controlled indoor (SCI) en-
vironment, composed of 50 subjects over two sessions.
Visible imagery was captured utilizing a Canon Pow-
erShot SX110 with an average inter-ocular distance of
119.59 pixels (min=52, max=139) and a standard de-
viation of 7.97 pixels. SWIR imagery was collected
at 1550 nm with a Goodrich SU640 at a stand-off dis-
tance of 50m and 106m, respectively, utilizing propri-
etary optics and laser illumination. Inter-ocular dis-
tance, averaged across both distances, was 61.79 pixels

2DB3 visible imagery was acquired with multiple cameras including an
Canon PowerShot.



(min=53, max=75) with a standard deviation of 3.78
pixels.

3. DB3 - Collected in an uncontrolled outdoor (UO) en-
vironment during day and night (SWIR only). This
dataset is composed of 16 subjects over multiple ses-
sions. Visible images were acquired with multiple
cameras including a Canon PowerShot SX110. The
average inter-ocular distance for the visible imagery
was 113.07 pixels (min=26, max=317) with a stan-
dard deviation of 59.90 pixels. SWIR imagery was
collected at 1550 nm with a Goodrich SU640 at vari-
able stand-off distances, ranging from 60 to 400 me-
ters. Inter-ocular distance averaged around 110.22 pix-
els (min=47, max=146) with a standard deviation of
17.22 pixels. It is also important to note that the SWIR
imagery was collected opportunistically. That is, sub-
jects were uncooperative, and no constraints were in
place to minimize expression, pose, stand-off distance,
and occlusion (sunglasses and headgear).

3. Methodological Approach

In this paper we experiment with both commercial and
academic FR algorithms. While pre-processing methods
utilized by the commercial software are not known, the pro-
posed research software [11] employed the following pre-
processing routines.

3.1. Photometric Normalization

Cross spectral face recognition is a challenging prob-
lem because the physical interaction of different electro-
magnetic waves (i.e., visible vs. SWIR) with materials (in
our case facial skin) will be different, resulting in different
reflection, transmission and scattering properties. As such,
texture, contrast, etc. is different when dealing with visible
and SWIR face images. Photometric normalization algo-
rithms have traditionally been employed to compensate for
changes in illumination, such as ambient variation or strong
shadows [9]. Similarly, in this work we employ photometric
normalization for the purpose of facilitating cross spectral
matching. More specifically, we employed contrast lim-
ited adaptive histogram equalization (CLAHE) [7], single
scale retinex [3] (SSRlog) with logarithmic transformation,
single scale retinex (SSRatan) with arc-tangent transforma-
tion, SSRlog followed by CLAHE, and SSRatan follow by
CLAHE (see Fig. 2 for sample face images normalized by
the aforementioned techniques). These algorithms are de-
scribed as follows:

1. CLAHE - Operates on local regions (8x8 for our ex-
periments) in the image and applies histogram equal-
ization to each region. Mathematically, it is described

as:

f(n) =
N − 1

M
×

n∑
k=0

h(k), (1)

where M and N are the number of pixels and gray level
bins in each sub-region, and h is the histogram of each
sub-region. To increase contrast without amplifying
noise, CLAHE redistributes each histogram such that
the height falls below the clip limit threshold (.01 in
our experiments). More specifically, gray level counts
above the clip limit are uniformly redistributed among
the gray levels below the clip threshold. Each sub-
region is then subsequently combined using bilinear
interpolation.

2. SSR - The image is decomposed into illumination
L(x, y) (the amount of light falling on the targeted ob-
ject), and reflectance R(x, y) (the amount of light re-
flected from the surface of the targeted object). Illumi-
nation is estimated as a low-pass version of the original
image, while reflectance is found by dividing the orig-
inal image by the estimated illumination followed by
a non-linear transformation such as the logarithm or
arc-tangent. Mathematically this is described as:

I(x, y) = L(x, y)×R(x, y), (2)
L(x, y) = I(x, y) ∗Gσ(x, y), (3)

where Gσ is a Gaussian of scale σ, and ∗ denotes con-
volution. Finally, the reflectance is estimated as:

R(x, y) = κ

(
I(x, y)

L(x, y)

)
, (4)

where κ is a non-linear transformation such as the log-
arithm or arc-tangent function.

3. SSR Combinations - A common problem with SSR
is that certain regions of the image can become over-
saturated or “washed out”, which can have a negative
impact on texture based approaches to face recogni-
tion. Furthermore, “halo” artifacts may be introduced
depending on the scene and scale value chosen for the
Gaussian smoothing function. Modifications to SSR
have been introduced in the literature to help allevi-
ate this problem, such as multi-scale retinex [6], but at
the cost of increased processing time. In this work, we
also experiment with the combination of SSR followed
by CLAHE normalization to help compensate for the
aforementioned degradations.

3.2. Face Detection and Geometric Normalization

First, the Viola & Jones face detection [12] algorithm
was applied to the visible and SWIR images from databases
DB1, DB2, and DB3 (visible only). It was used to localize



Figure 2. Illustration of photometric normalization for visible and SWIR (1550 nm) imagery. Note that for columns 3 and 5, regions of
the face become over-saturated, obscuring local texture. The application of SSR followed by CLAHE, columns 4 and 6, reduces over-
saturation, thereby increasing the contrast of local textures in the face region.

the spatial extent of the face and determine its boundary.
A geometric normalization scheme was applied to im-

ages acquired after face detection. The normalization
scheme compensated for slight perturbations in the frontal
pose, and consisted of eye detection and affine transfor-
mation. Automated eye detection was performed using
a template matching algorithm where the coordinates of
the eye were automatically obtained [13]. Traditional face
and eye detection techniques did not work when evaluat-
ing images from DB3 acquired in the SWIR band. Thus,
eyes centers were located by manual annotation. After the
eye centers were found, the canonical faces were automati-
cally constructed by applying an affine transformation. Fi-
nally, all faces were canonicalized to the same dimension of
150× 130.

3.3. Face Recognition Methods

Both commercial and research software was employed to
perform the face recognition experiments: (1) Commercial
software such as Identity Tools G8 provided by L1 Systems;
(2) standard texture based face recognition methods such as
LBP and LTP [11]. The LBP operator was introduced as
a texture descriptor. Patterns in an image are computed by
thresholding 3× 3 neighborhoods based on the value of the
center pixel. Then, the resulting binary pattern is converted
to a decimal value. The local neighborhood is defined as a
set of sampling points evenly spaced on a circle. The LBP
operator used in our experiments is described as LBPu

2

P,R,

where P refers to the number of sampling points placed on a
circle with radius R. The symbol u2 represents the uniform
pattern, which accounts for the most frequently occurring
pattern in our experiments. The pattern is important be-
cause it is capable of characterizing local regions that con-
tain edges and corners. The binary pattern for pixels, lying
in a circle fp, p = 0, 1, . . . , P − 1 with the center pixel fc,
is mathematically computed as follows:

S(fp − fc) =
{

1 if fp − fc ≥ 0;
0 if fp − fc ≤ 0.

}
(5)

Following this a binomial weight 2P is assigned to each sign
S(fp − fc) to compute the LBP code,

LBPP,R =

P−1∑
p=0

S(fp − fc)2P . (6)

LBP is invariant to monotonic gray-level transformations.
However, one disadvantage is that LBP tends to be sensi-
tive to noise in homogeneous image regions since the binary
code is computed by thresholding the center of the pixel re-
gion.

Consequently, LTP [11] has been introduced to over-
come such a limitation, where the quantization is performed
as follows:

S(fp − fc) =

 1 if fp − fc ≥ t;
0 if |fp − fc| ≤ t.
−1 if fp − fc ≤ −t.

 (7)



Figure 3. Cross-photometric score level fusion illustration. Gallery and probe images are heterogeneously matched across different photo-
metrically normalized imagery, which can provide additional information for match score fusion as opposed to intra-photometric matching.

The output of this operator is a 3-valued pattern, as opposed
to a binary pattern. Furthermore, the threshold t, can be
adjusted to produce different patterns. The user-specific
threshold also makes the LTP code more resistant to noise.

3.4. Cross-Photometric Score Level Fusion

In [4], Mendex-Vazquez et al. demonstrated that when
operating in the visible spectrum, cross-photometric score
level fusion can be utilized to improve matching perfor-
mance under variable lightning conditions. In this work,
we propose a cross-photometric match score fusion rule
applied to images acquired in the visible and SWIR spec-
tra, before and after photometric normalization. Our work
is different not only in the application (i.e., facilitation of
cross-spectral matching; challenging scenarios), but also in
the selection and combination of photometric normalization
techniques. Intuitively, intra-photometric matching is bene-
ficial when variability is limited to a single degradation (i.e.,
illumination) or degradations which are consistent across
the observed data.

In this paper we demonstrate that, when facial images are
collected with multiple sources of variability present (i.e.,
illumination, blur, low contrast, etc.), cross-photometric
match score fusion provides better performance by taking
advantage of the information present across all photomet-
rically normalized imagery. This is facilitated by photo-
metrically normalizing both gallery and probe images by
the aforementioned techniques described in subsection 3.1,
resulting in six (n = 6) gallery and six probe images per
comparison (this process is illustrated in Fig. 3). Match-
ing is then performed cross-photometrically between the 36
combinations. This is mathematically characterized as:

Sij =

n∧
i=1

n∧
j=1

m (Gti, P tj) , (8)

where Gt and Pt are the gallery and probe templates
respectively. Matching function m() corresponds to the
matching algorithms described in subsection 3.3, while

∧
simply indicates iteration. Then, the max or min fusion rule
is applied on the vector of resulting match scores, Sij , for
similarity (G8) or distance (LBP/LTP) respectively.

3.5. Cross-Spectral Matching

Utilizing the datasets illustrated in Table 1, three differ-
ent scenarios, described in subsection 2.1, were explored:
controlled indoor (CI), semi-controlled indoor (SCI), and
uncontrolled outdoor (UO). For each scenario the following
set of experiments were conducted:

1. Visible to visible (baseline)
2. Visible to SWIR (before photometric normalization)
3. Visible to SWIR (after photometric normalization)
4. Visible to SWIR (Proposed cross-photometric fusion)

In the first experiment, matching is performed on images
acquired in the visible spectrum for the purpose of estab-
lishing a baseline for comparison. The second experiment
establishes a baseline for cross-spectral matching prior to
photometric normalization. Specifically, gallery images ac-
quired in the visible spectrum are matched against imagery
captured in the SWIR spectrum. Similarly, the third experi-
ment evaluates the performance of cross-spectral matching
after the application of the photometric normalization al-
gorithms described in subsection 3.1. Finally, the fourth
experiment applies the proposed cross-photometric fusion
rule.

The identification performance of the system is evaluated
through the cumulative match characteristic (CMC) curve.
The CMC curve measures the 1 : m identification system
performance, and judges the ranking capability of the iden-
tification system.

4. Results and Discussion
For all matching experiments only one visible gallery

image and one SWIR image (at 1550 nm) is utilized per
subject. CMC Performance for experiments 1-4 across all
databases is illustrated in Fig. 4. The proposed fusion rule
is presented only for the best performing matcher (perfor-
mance for all matchers is listed in Table 2).

The experimental results indicate that, although cross-
spectral matching is a very challenging problem, when
gallery (visible) face images are compared against SWIR
face images, and all images were acquired under fully con-



Figure 4. CMC curves comparing the performance of baseline
(visible to visible) and baseline (visible to SWIR) to the proposed
fusion rule with G8.

trolled conditions (DB1 database), the identification rate
can be very high (100% at rank-1). Interestingly, the iden-
tification rates at rank-1 in cross-spectral matching experi-
ments is comparable to the baseline identification rates, i.e.,
when performing intra-spectral (baseline scenario - when
using both gallery and probe images that were all collected
in the visible spectrum) matching experiments.

When using our proposed fusion-based approach, in
semi-controlled conditions (DB2 database) at a stand-off
distance of 50 m, the identification rate (90%) is reasonably
comparable to the baseline rate. However, when the stand-
off distance is more than doubled (106 m), the identification
rate at rank-1 drops another 11%, resulting in 79% accuracy.

DB1
v-v v-s (w/o Norm, w Norm, Proposed)

G8 1 (0.94, 0.96-CLAHE, 1)
LBP 0.96 (0.46, 0.56-CLAHE, 0.56)
LTP 0.96 (0.48, 0.62-CLAHE, 0.64)

DB2-50m
v-v v-s (w/o Norm, w Norm, Proposed)

G8 1 (0.82, 0.88-SSRlogCLAHE, 0.90)
LBP 1 (0.16, 0.41-SSRatanCLAHE, 0.29)
LTP 1 (0.22, 0.39-SSRatanCLAHE, 0.24)

DB2-106m
v-v v-s (w/o Norm, w Norm, Proposed)

G8 1 (0.67, 0.76-SSRlogCLAHE, 0.80)
LBP 1 (0.20, 0.22-SSRatanCLAHE, 0.22)
LTP 1 (0.20, 0.29-SSRlog, 0.18)

DB3
v-v v-s (w/o Norm, w Norm, Proposed)

G8 0.81 (0.29, 0.37-SSRlog, 0.37)
LBP 0.69 (0.11, 0.14-SSRatan, 0.15)
LTP 0.69 (0.10, 0.13-SSRlog, 0.11)

Table 2. Rank 1 identification rates when utilizing G8, LBP, and
LTP for cross-spectral matching. Experiment 1 is indicated by v-v
while experiments 3-4 are indicated as v-s (w/o Norm, w Norm,
proposed) respectively. Note that for experiment 3, v-s (w Norm),
only performance for the single best photometric normalization
technique is provided which is indicated within the table for each
matcher.

In the most challenging (DB3 - uncontrolled) scenario, all
FR matchers do not perform well. One of the problems is
that in the baseline experiment of the uncontrolled scenario,
the number of subjects used is quite modest (16). Another
problem is that different subjects were acquired under dif-
ferent conditions (the gallery images were acquired under
variable distances and illumination conditions; also subjects
were not cooperative when acquiring the probe imagery).
The advantage of using G8, in combination with the pro-
posed fusion rule when experimenting with database, DB3,
is that it performs better than baseline (single matchers be-
fore photometric normalization) cross-spectral system per-
formance by approximately 25%.

5. Conclusions

In this paper our focus was on investigating the problem
of cross spectral face recognition in heterogeneous environ-
ments. Specifically we investigate the advantages and lim-
itations of matching SWIR face images against visible im-
ages under variable conditions. In terms of pre-processing,
different photometric normalization techniques were used.



In addition, two research and one commercial matcher were
employed to perform a set of baseline experiments. For
the purpose of this work, three different databases are con-
sidered representing three different data collection condi-
tions, i.e., images acquired in fully controlled indoors, semi-
controlled indoors, and uncontrolled outdoor environments.
Our results indicate that, across all datasets used, the appli-
cation of photometric normalization improves recognition
performance. While different face matchers were applied in
all three datasets, the best performance results (when com-
pared to the cross spectral baseline scenario, i.e., visible to
SWIR matching before normalization) were acquired when
using our proposed cross-photometric fusion rule in con-
junction with G8 across all experimental scenarios (based
on the aforementioned databases).

Our future plans are to develop an improved normaliza-
tion scheme that will bridge the spatial representation of
face images acquired under visible and SWIR bands. This
is expected to result in improved matching performance.
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