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Abstract

In this paper the problem of human ear recognition in the Mid-Wave Infrared
(MWIR) spectrum is studied in order to illustrate the advantages and lim-
itations of the ear-based biometrics that can operate in day and night time
environments. The main contributions of this work are two-fold: First, a
dual-band database is assembled that consists of visible (baseline) and mid-
wave IR left and right profile face images. Profile face images were collected
using a high definition mid-wave IR camera that is capable of acquiring ther-
mal imprints of human skin. Second, a fully automated, thermal imaging
based, ear recognition system is proposed that is designed and developed to
perform real-time human identification.

The proposed system tests several feature extraction methods, namely:
(i) intensity-based such as Independent Component Analysis (ICA), Princi-
pal Component Analysis (PCA), and Linear Discriminant Analysis (LDA);
(ii) shape-based such as Scale Invariant Feature Transform (SIFT); as well as
(iii) texture-based such as Local Binary Patterns (LBP), and Local Ternary
Patterns (LTP). Experimental results suggest that LTP (followed by LBP)
yields the best performance (Rank1 = 80.68%) on manually segmented ears
and (Rank1 = 68.18%) on ear images that are automatically detected and
segmented. By fusing the matching scores obtained by LBP and LTP, the
identification performance increases by about 5%. Although these results are
promising, the outcomes of our study suggest that the design and develop-
ment of automated ear-based recognition systems that can operate efficiently
in the lower part of the passive IR spectrum is a very challenging task.

Keywords: Thermal Infrared Imaging, Thermal Ear Features, Score Level
Fusion and Multi-Biometrics.
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1. Introduction

Automated methods of recognizing an individual are based on measurable
human body characteristics. However, different biological characteristics ex-
hibit both strengths and weaknesses. For example, fingerprints and irises can
result in high recognition rates but in order to be measured accurately they
require controlled conditions and the subjects need to interact cooperatively
with a device. In military and law enforcement applications where remote
recognition is necessary, face and ear biometrics can be used for establishing
human identity, because they have several advantages over other biometric
traits: they are non-intrusive, understandable, and facial images can be cap-
tured in either cooperative or non-cooperative manner at variable standoff
distances. Unlike human faces, ears are not affected by facial expression or
by differences in background [1].

The ear biometric has certain advantages over other biometrics: ears are
relatively static in size and structure over each individual’s life [2]. One of
the concerns when using the ear biometric is that there is no longitudinal
study (to our knowledge at this point in time) that shows that ear shape is
static. The forensic science literature though reports that ear growth, after
the first four months of birth, is highly linear [2]. The rate of stretching is
approximately five times greater than normal during the period from four
months to the age of eight; after which it is constant until around the age
of seventy when it again increases. To the best of our knowledge, there
is only one biometric experiment on the effect of aging on ear recognition
by Ibrahim et al. [3]. This experiment shows that ear recognition rate is
marginally affected over the eleven months period of data collection and the
authors concluded that “ear can be used in various applications as a time
invariant biometric”.

A typical 2-D ear biometric recognition system has three modules:

1. Detection (segmentation): The ear region is localized in a given 2D
image and then segmented for further processing.

2. Feature Extraction: Ear-based features are extracted using certain at-
tributes. Some of these features required ear alignment such as Iannarelli’s
geometric distances; while others do not require alignment such as SIFT
features. Iannarelli [2] manually aligned the ear images; Other methods
extracted the external ear contour (edges) and used the two extreme,
having maximum in-between distance, points to align the ear image
[4, 5].
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3. Matching: In this module the features extracted by a query ear are
compared against those extracted by multiple ears in the enrollment
(gallery) database to associate the identity of the query ear to one of
those in the database. The features extracted from each ear sample
of the gallery dataset are matched against those extracted from the
samples of the probe dataset.

While most of the current ear-based recognition approaches are mainly
focused in performing feature extraction on data acquired in the visible band
[6], in this work we perform a set of experiments and investigate the efficiency
of several feature extraction approaches on profile mid-wave infrared face
images. Figure 1 illustrates why designing mid-wave IR based ear recognition
techniques is important.

The MWIR band has both reflective and emissive properties and it can
it can operate in both day and night time environments. Other advantages
of MWIR over the active IR band, i.e. Near IR or Short-wave IR (see fig.2)
are: (i) MWIR imagery can be acquired without any external illumination
in day or night environments (regions in the active IR band might require an
external light source), (ii) anatomical features not observable in the active
IR spectrum can be observable in MWIR [7], and (iii) background clutter in
MWIR images is not always visible.

The above observations as well as the potential future applications in law
enforcement and the military, were the main motivation for our work. To the
best of our knowledge, this paper represents the first attempt in the open
literature to investigate the problem of ear recognition in a specific range of
the passive infrared (thermal) band.

1.1. Most Related Work in the Thermal Band

The importance of using the Middle-Wave Infrared (MWIR) band for
human recognition was first discussed in [8, 9]. In [8], the authors studied
the problem of eye detection in the MWIR spectrum and discuss the effect
of eye detection, one of the fundamental step in most face recognition sys-
tems, on face recognition. The authors showed that MWIR face images can
efficiently be matched to MWIR face images (same session). They also sug-
gested that cross-session (i.e. outdoors vs. indoors) matching in the MWIR
band can significantly degrade recognition performance (in terms of rank-1
scores). In [9], the authors also discussed the challenges associated when
designing face identification systems that operate in the MWIR band. The
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Figure 1: Sample images of two subjects acquired in day time and night time
conditions, using a visible and a thermal camera.

authors illustrated the advantages and limitations of intra-spectral (MWIR
to MWIR) matching, while they also revealed how challenging the problem
of cross-spectral (MWIR to visible or vice versa) matching is.

In [10], the authors proposed a statistically-based algorithm for physiolog-
ical feature extraction (namely wrinkles, veins, edges, and perimeters of facial
characteristics. Fiducial (that is, reference) points are subsequently detected
either manually or automatically. For that purpose, they used three differ-
ent extractors, i.e., a fingerprint-based minutiae detector, the scale-invariant
feature transform (SIFT), and the speeded up robust features (SURF) de-
tector. Finally, they matched faces using an alignment-based matching algo-
rithm with the ability of finding the correspondences between a stored set of
gallery points and an input set of probe points. A summary of MWIR-based
algorithms, methods and experiments can be found in [7].

While all the aforementioned MWIR-based approaches focused in the area
of face recognition, there is no reported work in the open literature regarding
ear recognition in MWIR band in particular, or thermal IR band in general.
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Figure 2: The electromagnetic spectrum illustrates various sub-bands from Visible
to InfraRed. The wavelengths are in µm.

1.2. Drawbacks of thermal images

Though thermal images have found to be useful in face recognition [8, 9],
there are some limitations for thermal band [11].

• Health or Physical Related Conditions: There are various conditions
under which the thermal characteristics for human skin (e.g. face re-
gions) can be altered. These can be generally categorized into health
variations (e.g. high fever, consumption of alcohol etc.), or physical
variations related to stress, emotional state or physical activity. Since
human ears (as well as the nose and eyebrows) are more exposed to
external air flow from the environment, they are generally cooler than
other parts of the human face and less affected by changes of human
physiology [12]. Figure 3 shows examples of ear images that appear
darker than areas of visible (exposed) blood vessels (e.g. superficial
temporal artery [13]).

• Occlusion: The usage of glasses or human hair blocks most of the
thermal energy emitted for human skin (including faces or ears).

• Thermal Sensitivity: thermal sensitivity of the MWIR cameras is im-
portant since it impacts image quality, i.e., the greater the sensitivity,
the more accurate the camera can be in order to produce higher quality
images.

• Cost: High-end sensors are very expensive. However, the cost of ther-
mal security cameras has dropped considerably, and is now comparable
to high end digital single-lens reflex (DSLR) cameras (visible band).
For example, FLIR is now offering LWIR cameras starting at less than
3,000 US dollars, making them more affordable and thus researchers
can utilize them in several innovative ways.
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Figure 3: Examples of ear images that appear darker in MWIR band.

1.3. Our Approach

In this work, we designed and developed an ear-based recognition system
that works in the MWIR band. The main modules of the system are ear
detection, feature extraction and matching. Our ear detection approach is
based on a new cascaded AdaBoost framework that is more computationally
efficient when compared to the baseline one [14]. Then we investigate several
feature extraction methods using MWIR left and right profile face images.
Finally, a set of experiments is conducted to determine the effect of the
aforementioned design steps in recognition performance:

• The first set of experiments investigate the recognition accuracy of
intensity-based and shape-based feature extraction approaches;

• The second set of experiments use automated ear detection [14], then
investigate the same feature extraction approaches;

• The third set of experiments evaluate the effect of combining several
features on recognition performance (see Fig. 4)

The methods studied in this work are evaluated using the WVU Visible-
Thermal Profile Face (VTPF) database that consists of face images of more
than 80 subjects and that was captured on two different sessions. The
database was assembled indoors spanning over a time period of about 3
months, with at least 2 weeks between data re-acquisition for all partici-
pants.

1.4. Paper Organization

The rest of the paper is organized as follows: Section 2 describes the
hardware used in data collection and the acquired database. Section 3 de-
scribes the ear detection technique. Section 4 presents several methods for
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Figure 4: Block diagram of the proposed thermal ear recognition system.

feature extraction, namely: intensity-based such as ICA, PCA, and LDA;
shape-based such as SIFT; and texture-based such as LBP, and LTP. Sec-
tion 5 describes various experiments to evaluate the proposed technique, and
Section 6 provides concluding remarks, and sketches our plans for future
work.

2. Thermal Imagery

The thermal camera used in this work is a high definition Middle-Wave
Infrared (MWIR) camera produced by FLIR Systems1. It is capable of ac-
quiring thermal imprints of human skin and analyzing the thermal distri-
butions and temporal variations. The camera is capable of generating high
definition thermal images and operating in diverse testing environments. It
features a high resolution 1024×1024 Indium Antimonide (InSb) Focal Plane
Array (FPA) achieving mega-pixel image resolution in a single thermal im-
age. The spectral range of the camera is 3-5µm, and it has a 14 bit dynamic
range and a Noise Equivalent Temperature Difference (NEDT) of less than
25mK. The camera was outfitted with a 50 mm MWIR lens also provided by
FLIR Systems.

1“FLIR Systems,” http://www.flir.com, 2011.
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Figure 5: Block diagram of the live subject-capture setup using the visible and
MWIR cameras.

The live face capture configuration we used is illustrated in Fig. 5.
The camera features a high resolution 1024x1024 Indium Antimonide (InSb)
Focal Plane Array (FPA) achieving mega-pixel image resolution in a single
thermal image. The distance between the subject’s ear and the camera was
set to about 6.5 feet and thus, the size of an average ear region was 73x48
pixels. The database was assembled indoors spanning over a time period of
20 days. In the beginning of the session, the subjects were briefed about
the data collection process after which they signed a consent document. We
had access for a top of the line FLIR MWIR camera for a very short period
of time, and that is why we only managed to collect about 88 subjects, out
of which about 57 subjects participated in two sessions. One of the issues
though is that the data collection was not originally designed to address
the problem of ear detection (but face recognition) and thus, the available
profile images were not always usable for the problems of ear detection and
recognition.

2.1. Issues with Acquiring MWIR Face Images

While the target was to collect only full profile images (+/ − 90o head
yaw) some subjects did not follow the exact data collection protocol. This
resulted in having some sample images with head yaws (y-axis) that range
from +/ − 10o to +/ − 90o. Thus, we had to deal with a more challenging
problem (i.e., detecting ears under variable poses), since having only full
profile data would result in better detection rates.

Another issue is the thermal sensitivity of the camera that is an impor-
tant factor since it impacts image quality, i.e., the lower the sensitivity, the
more accurate the camera can be in order to produce higher quality images.
The camera that we are using has the highest sensitivity in the market. The
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associated software of the camera was used to perform regular calibration
(before acquired each set of thermal profile images), which ensures that the
camera operates to its optimum performance, and as a result it guarantees
measurement accuracy and reliability. The camera operated in a controlled,
low temperature environment (room temperature) where better thermal sen-
sitivity can be exploited since the thermal contrast (temperature delta within
an image) is very low. An additional software tool (provided by FLIR) was
used to remove noise (e.g, dead pixels) from face images and control the
temperature scale limits (e.g., setting the temperature range from 28o to 41o

Celsius that is the typical range of human body temperature) during data
collection.

3. Ear Detection System

The ear detection procedure classifies images based on the value of rect-
angular features. These features encode ad-hoc domain knowledge, and can
work faster than pixel-based ones [15]. The original approach to detection
(baseline) has been widely used to solve the problem of face detection (e.g.
in the work of Viola-Jones). A modified version of the baseline approach was
used to the ear modality in 2008 [16].

For our study and in order to have accurate ear detection results using
MWIR profile face images, we re-designed the methodological steps of the
original ear detection procedure, and thus, managed to reduce the learning
time. Hence, the required training time was reduced from several weeks
(using the original Viola-Jones method) to several hours (using our proposed
approach) [14].

In the ear detection method [14], each rectangle feature f represents the
main component of the weak classifier h(x, f, p, φ), where φ is a threshold,
and p is the polarity indicating the direction of the inequality:

h(x, f, p, φ) =

{
1 if p · f(x) < p · φ
0 otherwise

(1)

The learner is called a weak classifier due to its low performance. Each
ensemble classifier consists of a set of T weak classifiers, where θ is the
threshold of the ensemble (strong) classifier:

H(x) =

{
Continue

∑T
t=1 αt · ht(x) > θ

Reject otherwise
(2)
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Figure 6: Overview of the proposed ear detection approach: An input thermal
image is scaled multiple times. For each scale a set of all possible 24×16 pixel sub-
images (including overlapping ones) is extracted. Then each sub-image is evaluated
through a cascaded AdaBoost classifier, after which a decision about the location
of ears (when detected) is made.

These ensemble classifiers have a cascade arrangement forming the ear
detection system (see Fig. 6).

In order to detect an ear in an input image, the image is scanned using
the proposed cascaded AdaBoost system. This means that the input image is
divided into overlapped sub-images of 24×16 2, and each region is evaluated.
Then, the image is scaled down by a factor s = 0.8 and the process is
repeated. At this post-processing stage, all the detected regions at various
levels of the scale pyramid are scaled back to the original image resolution.
Finally, the overlapped detected regions are combined into one rectangle

2The average ear size is 73x48 pixels.
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region.

4. Feature Extraction

In this section, we examine various ear recognition algorithms proposed
in the visible domain and attempt to apply these techniques in the MWIR
domain. These feature extraction methods are: intensity-based such as
(ICA)[17], (PCA) [18], and (LDA)[19]; shape-based such as (SIFT); and
texture-based such as (LBP), and (LTP). Since ICA, PCA, and LDA are
well known algorithms, we do not provide more information on them. What
follows is a description of SIFT, LBP and LTP feature extraction methods.

4.1. Extraction of Ear-based Features using SIFT

The scale invariant feature transform (SIFT) is a shape based feature
extraction method for extracting highly distinctive invariant features. SIFT
algorithm [20], consists of four major stages:

scale-space extreme detection: the Difference-Of-Gaussian (DOG) func-
tion is applied to an ear image to identify candidate points that are
invariant to scale and orientation.

key point localization: this step rejects points having low contrast (sen-
sitive to noise) or are poorly localized along an edge.

orientation assignment: a gradient orientation histogram is computed in
the neighborhood of each key-point, where histogram peaks correspond
to dominant orientations.

key point descriptor: for each selected key-point orientation, the feature
descriptor is computed as a set of orientation histograms.

4.2. Extraction of Ear-based Features using LBP

LBP operators are one of the best performing texture descriptors [21].
The basic LBP operator assigns a a decimal value to each pixel in the image
by thresholding (P) neighbor pixels at distance (R), as shown in fig. 7. The
histogram (H) of these decimal values represents the feature vector.

Ojala et al.[21] called a local binary pattern uniform, if it contains at
most two bitwise transitions from 0 to 1 or vice versa when the bit pattern
is considered circular. This is considered as a feature selection method that
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Figure 7: Basic LBP operator: (1) For a given input image pixel and its 8 neighbors,
(2) Each neighbor pixel greater than or equal to the center pixel is assigned 1
otherwise it is assigned 0, (3) These binary values are arranged to form a binary
number (01110010), which is transferred to a decimal equivalent (114).

reduced the number of features, and hence reduce the processing time. Ex-
perimental results, using 180 pre-processed MWIR ear images, showed that:

• 93.55% of the patterns in the 8,1 neighborhood are uniform pixels,

• 89.57% of the patterns in the 8,2 neighborhood are uniform pixels,

• 84.16% of the patterns in the 16,2 neighborhood are uniform pixels,

Hence, we decided to use the uniform pattern only.
For the block based division, the image is divided into N blocks. These

blocks can be of arbitrary size and can overlap. The LBP operator is applied
to each block separately, and their corresponding histograms H = [h1h2...hN ]
are calculated. Integration of these blocks can be at the feature level, by
concatenating the histograms extracted from various blocks, then the overall
histogram H is used for matching. One of the main advantage of dividing
the image into sub-blocks is that these blocks are expected to be more dis-
criminative than using the whole image.

4.3. Extraction of Ear-based Features using LTP

Local Ternary Patterns (LTP) operators extends LBP to 3-valued codes
[22] , in which gray levels in a zone of width ±t around centered value are
quantized to zero, ones above this are quantized to +1 and ones below it to
−1, i.e. the indicator s(u) is replaced by a 3-valued, as shown in fig. 8. This
trinary number is transferred into two binary numbers. In other words, two
separate channels of LBP descriptors are formed. Two histograms of these
two decimal values are concatenated to form the feature vector.
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Figure 8: Basic LTP operator: (1) For a given input image pixel and its 8 neighbors,
(2) Each neighbor pixel greater than the center pixel plus t is assigned 1, or less
than the center pixel minus t is assigned to -1, otherwise it is assigned 0, (3)
These trinary values are arranged to form a trinary number (01“-1”“-1”1110), (4)
This trinary number is transferred into two binary numbers (01001110, 00110000),
which are then transferred into two decimal equivalents (92, 48).

5. Experimental Results

In this section, we present various experiments to evaluate:

• The effect on ear recognition performance when using several feature
extraction techniques in the MWIR band.

• The effect of score-level fusion on ear recognition performance.

We start this section by describing the database, the training phase, and
then, we demonstrate various experiments to prove the proposed concept of
ear recognition of ear recognition in the MWIR band.

5.1. Database

The aforementioned thermal system (see Section 2) was employed for
data collection in order to assemble, as part of a pilot study, the Thermal
Profile Face (TPF) database (see Fig. 9). The standoff distance was set to
6.5 feet. The thermal-based database used was assembled indoors spanning
over a time period of about 3 months, with at least 2 weeks between data
re-acquisition for all participants.

For testing, 57 subjects (40 males + 17 females) were used in this experi-
ment. Due to some technical reasons like complete hair occlusion and severe
head profile angle, 12 subjects were excluded from one or more session; hence
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Figure 9: MWIR camera setup and acquired sample profile face images. Note that
originally the camera acquires video frames where each pixel has a temperature
value ranging from ∼28-41 degrees Celsius. Then, these frames are converted to
gray-scale images for display purposes.

Figure 10: Examples of challenging ear occlusion that we had to use in testing.

excluded from the testing. In the testing phase, we end up using 45 subjects,
4 images per subjects (2 left, and 2 right images). An overview of the modes
and numbers of subjects and images are provided in Table 1. More than 25%
of these images are still having hair occlusion as shown in fig. 10.

For training, we used 31 (23 males + 8 females) subjects, 12 images per
subjects (6 left, and 6 right images). Due to hair occlusion, 1 subject was
excluded. Then for the remaining images, the ear regions were manually
segmented.

5.2. Training Phase and Parameter Tuning

Using the training data set, we set up several identification experiments
to choose some parameters so as to optimize the performance of several fea-
ture extraction methods. The first experiment was to choose the best LBP
operator ((LBPU

8,1, LBP
U
8,2, orLBP

U
16,2)), LBP optimum block size, as well as
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Table 1: Details of the database used for the experiments

Mode Subjects
Left Right Total

(images) (images) (images)
Training 30 180 180 360
Testing Galleries 45 45 45 90
Testing Probes 45 45 45 90

Table 2: Identification rate (R1:Rank1) for several LBP and LTP operators, after dividing
the image into various blocks

Operators left Set (R1%) Right Set (R1%) Both (R1%)
LBP8,1 3x3 92.90 99.33 96.07
LBP8,2 3x3 96.77 99.33 98.03
LBP16,2 3x3 95.48 99.33 97.38
LBP8,1 5x5 92.90 99.33 96.07
LBP8,2 5x5 94.19 98.67 96.39
LBP16,2 5x5 94.19 98.00 96.07
LTP 3x3 95.70 98.89 97.27
LTP 5x5 93.55 98.89 96.17
LTP 7x7 94.62 98.89 96.72

LTP optimum block size. Details of this experiment is shown in table 2. For
LBP, result show that the LBPU

8,2 operator achieves the best performance,
when dividing the images into 3x3 blocks. For LTP, results consistently show
that dividing the images into 3x3 blocks yields the optimum performance.
Please note the high performance return to the fact that the training data
came from one session, so variation is only due to various poses. We trained
the intensity based techniques via two methods. The first method is class
specific, as left and right ears will have unique principle components. The
second method is class general, as the left and right ears will have one general
principle component (Both).

5.3. Performance of various ear features

In the first experiment, using the test dataset, we evaluated several feature
extraction methods in terms of their recognition rate, and computational
complexity, i.e. processing time to process (extract features) a query profile
face image. This experiment shows LTP to yield the best performance, and
LBP to yield the second best (details in table 3).
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Table 3: Identification rate (R1:Rank1) for several ear features; Average processing time
(ms); (ICA), (PCA), (LDA), (SIFT), (LBP), (LTP).

Operators Left Set (R1%) Right Set (R1%) Both (R1%) Time (ms)
SIFT 32.56 37.78 34.09 357
LBP 76.74 64.44 70.45 151
LTP 81.40 80.00 80.68 167
PCA 39.53 40.00 42.05 19
ICA 58.14 55.56 61.36 25
LDA 41.86 33.33 30.68 20

With automated detection [14]
SIFT 30.23 35.56 32.95
LBP 60.47 55.56 57.95
LTP 72.09 64.44 68.18
PCA 20.93 26.67 23.86
ICA 30.23 42.22 35.23
LDA 16.28 24.44 22.73

In the second experiment, we use an automated ear detection technique
[14], then we re-evaluated the above mentioned feature extraction methods
(details in table 3, and fig. 11). This process required on average 260 ms.
Experimentally LTP was proven to yield the best performance, while LBP
to be the second best.

An interesting observation comes for Table 3. There we see that recogni-
tion of left ears has better accuracy than right ears. Based on our empirical
evaluation, we determined that this error was due to pose (as shown in Fig.
13). We return this to the experimental setup, where the subjects first move
their head to the right (exposing left ears more carefully), and then to the
left. As the data collection was not designed originally for addressing the
problem of ear recognition, the subjects and data collection operator were
not careful in achieving perfect profile face images.

In the third experiment, we evaluate several fusion schemes of the best
features extraction methods. We fused the best two techniques namely (LTP)
and (LBP) at the score level, using several fusion rules. Details of this
experiment are shown in Table 4. We found that: (i) this fusion does not help
in case of using manually detected ears. We return this to the available data
that carries hair occlusion for more than 25%; (ii) using a suitable fusion rule,
namely the SUM or PROD, the performance, using automated detection, is
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(a)ManualSegmentation (b)AutomatedSegmentation

Figure 11: Cumulative Match Curves (CMC) for various feature extraction methods
using: (a) manually segmented thermal ear images; (b) automatically segmented
thermal ear images. 17



(a) Correctly segmented ears

(b) Uncorrectly segmented ears

(c) Missed ears

Figure 12: Automated Thermal Ear Detection.

(a) Error due to pose

(b) Under segmentation error

Figure 13: Analysis of Ear Identification Error.
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Table 4: Identification rate (R1:Rank1) using several fusion schemes at the score
level, namely SUM:average rule, MIN: minimum rule, MAX: maximum rule, and
PROD: production rule.

Fusion Schemes Left Set (R1%) Right Set (R1%) Both (R1%)
LTP rule 81.40 80.00 80.68
LBP rule 76.74 64.44 70.45
SUM rule 79.07 77.78 78.41
MIN rule 81.40 68.89 75.00
MAX rule 76.74 80.00 79.55
PROD rule 79.07 75.56 77.27

With automated detection [14]
LTP rule 72.09 64.44 68.18
LBP rule 60.47 55.56 57.95
SUM rule 76.74 68.89 72.73
MIN rule 69.77 60.00 60.23
MAX rule 74.42 66.67 68.18
PROD rule 76.74 68.89 72.73

improved by about 5%.

6. Conclusions and Future Work

This paper has presented a study on the problem of ear recognition using
thermal profile face images (TPF) database with head yaws (y-axis) angle
that range from +/ − 50o to +/ − 90o. Experimental results show that: (i)
our proposed ear recognition method can operate on MWIR thermal band
with promising results; (ii) LTP was proven to yield the best performance
80.68% using manually segmented ear regions, and 68.18% using automated
ear detection regions; and (iii) The proposed fusion method yielded 72.73%
recognition accuracy using automated ear detection regions.

Although our approach is relatively successful in identifying ears under
various rotation angles and using relatively sizable database, it would be
desirable to: (i) scale up the database, and (ii) enhance system performance
under variable angles. Another extension of our work would be to test cross-
band (thermal and visible) reliable ear features.
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